skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ward_Jones, Melissa K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ice wedges, which are ubiquitous in permafrost areas, play a significant role in the evolution of permafrost landscapes, influencing the topography and hydrology of these regions. In this paper, we combine a detailed multi-generational, interdisciplinary, and international literature review along with our own field experiences to explore the development of low-centered ice-wedge polygons and their orthogonal networks. Low-centered polygons, a type of ice-wedge polygonal ground characterized by elevated rims and lowered wet central basins, are critical indicators of permafrost conditions. The formation of these features has been subject to numerous inconsistencies and debates since their initial description in the 1800s. The development of elevated rims is attributed to different processes, such as soil bulging due to ice-wedge growth, differential frost heave, and the accumulation of vegetation and peat. The transition of low-centered polygons to flat-centered, driven by processes like peat accumulation, aggradational ice formation, and frost heave in polygon centers, has been generally overlooked. Low-centered polygons occur in deltas, on floodplains, and in drained-lake basins. There, they are often arranged in orthogonal networks that comprise a complex system. The prevailing explanation of their formation does not match with several field studies that practically remain unnoticed or ignored. By analyzing controversial subjects, such as the degradational or aggradational nature of low-centered polygons and the formation of orthogonal ice-wedge networks, this paper aims to clarify misconceptions and present a cohesive overview of lowland terrain ice-wedge dynamics. The findings emphasize the critical role of ice wedges in shaping Arctic permafrost landscapes and their vulnerability to ongoing climatic and landscape changes. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Topographical changes are of fundamental interest to a wide range of Arctic science disciplines faced with the need to anticipate, monitor, and respond to the effects of climate change, including geohazard management, glaciology, hydrology, permafrost, and ecology. This study demonstrates several geomorphological, cryo- spheric, and biophysical applications of ArcticDEM – a large collection of publicly available, time-dependent digital elevation models (DEMs) of the Arctic. Our study illustrates ArcticDEM’s applicability across different disciplines and five orders of magnitude of elevation derivatives, including measuring volcanic lava flows, ice cauldrons, post-failure landslides, retrogressive thaw slumps, snowdrifts, and tundra vegetation heights. We quantified surface elevation changes in different geological settings and conditions using the time series of ArcticDEM. Following the 2014–2015 B´arðarbunga eruption in Iceland, ArcticDEM analysis mapped the lava flow field, and revealed the post-eruptive ice flows and ice cauldron dynamics. The total dense-rock equivalent (DRE) volume of lava flows is estimated to be (1431 ± 2) million m3. Then, we present the aftermath of a landslide in Kinnikinnick, Alaska, yielding a total landslide volume of (400 ± 8) × 103 m3 and a total area of 0.025 km2. ArcticDEM is further proven useful for studying retrogressive thaw slumps (RTS). The ArcticDEM-mapped RTS profile is validated by ICESat-2 and drone photogrammetry resulting in a standard deviation of 0.5 m. Volume estimates for lake-side and hillslope RTSs range between 40,000 ± 9000 m3 and 1,160,000 ± 85,000 m3, highlighting applicability across a range of RTS magnitudes. A case study for mapping tundra snow demonstrates ArcticDEM’s potential for identifying high-accumulation, late-lying snow areas. The approach proves effective in quantifying relative snow accumulation rather than absolute values (standard deviation of 0.25 m, bias of 0.41 m, and a correlation coefficient of 0.69 with snow depth estimated by unmanned aerial systems photogrammetry). Furthermore, ArcticDEM data show its feasibility for estimating tundra vegetation heights with a standard deviation of 0.3 m (no bias) and a correlation up to 0.8 compared to the light detection and ranging (LiDAR). The demonstrated capabilities of ArcticDEM will pave the way for the broad and pan-Arctic use of this new data source for many disciplines, especially when combined with other imagery products. The wide range of signals embedded in ArcticDEM underscores the potential challenges in deciphering signals in regions affected by various geological processes and environmental influences. 
    more » « less